On the Cyclotomic Unit Group and the $p$-Ideal Class Group of a Real Abelian Number Field

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of the p-part of the ideal class group of certain real abelian fields

Under Greenberg’s conjecture, we give an efficient method to compute the p-part of the ideal class group of certain real abelian fields by using cyclotomic units, Gauss sums and prime numbers. As numerical examples, we compute the p-part of the ideal class group of the maximal real subfield of Q( √ −f, ζpn+1) in the range 1 < f < 200 and 5 ≤ p < 100000. In order to explain our method, we show a...

متن کامل

Unit Fractions and the Class Number of a Cyclotomic Field

We further examine Kummer's incorrect conjectured asymptotic estimate for the size of the rst factor of the class number of a cyclotomic eld, h 1 (p). Whereas Kummer had conjectured that h 1 (p) G(p) := 2p(p=4 2) p?1 4 we show, under certain plausible assumptions, that there exist constants a ; b such that h 1 (p) G(p) for a x= log b x primes p x whenever log is rational. On the other hand, the...

متن کامل

An explicit formula for the number of fuzzy subgroups of a finite abelian $p$-group\ of rank two

Ngcibi, Murali and Makamba [Fuzzy subgroups of rank two abelian$p$-group, Iranian J. of Fuzzy Systems {bf 7} (2010), 149-153]considered the number of fuzzy subgroups of a finite abelian$p$-group $mathbb{Z}_{p^m}times mathbb{Z}_{p^n}$ of rank two, andgave explicit formulas for the cases when $m$ is any positiveinteger and $n=1,2,3$. Even though their method can be used for thecases when $n=4,5,l...

متن کامل

THE AUTOMORPHISM GROUP OF NON-ABELIAN GROUP OF ORDER p^4

Let G be a finite non-abelian group of order p^4 . In this paper we give a structure theorem for the Sylow p-subgroup, Aut_p(G)  , of the automorphism group of G.

متن کامل

The Class Number of the Cyclotomic Field.

1. Let g denote any odd prime and h = h(g) the class number of the cyclotomic field R(r), where r is the primitive gth root of unity, R the rational numbers. It is known that we can write: h = h1h2, where hi and h2 (both integers) are the so-called first and second factors of the class number; in fact h2 is the class number of the real field of degree 2 under R(r), namely the field R(D + D-). K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tokyo Journal of Mathematics

سال: 1997

ISSN: 0387-3870

DOI: 10.3836/tjm/1270042113